Easy access to diastereomerically pure platinacycles†

Concepción López,*a Amparo Caubet,a Sonia Pérez,a Xavier Solans^b and Mercè Font-Bardía^b

^a Departament de Quimica Inorgànica, Facultat de Quimica, Universitat de Barcelona, Martí i Franquès 1-11, 08028-Barcelona, Spain. E-mail: conchi.lopez@qi.ub.es

^b Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Martí i Franquès s/n, 08028-Barcelona, Spain

Received (in Cambridge, UK) 24th November 2003, Accepted 24th December 2003 First published as an Advance Article on the web 27th January 2004

The synthesis of the first examples of diastereomerically pure platinacycles having simultaneously a chiral carbon and a σ [Pt-C(sp², ferrocene)] bond is described.

The synthesis and study of the potential applications of cycloplatinated compounds have attracted great interest in recent years.¹⁻⁴ Most of the articles published so far are focused on complexes having a σ (Pt–Csp², aryl), or to a lesser extent a σ (Pt–Csp³) bond. Platinacycles with a $\sigma(Pt-Csp^2, \text{ ferrocene})$ bond are not common.5-9 Some authors have shown that chiral platinacycles can be potentially useful in asymmetric catalytic processes.² Although it is well known that cyclometallation of N-donor ferrocenyl ligands is expected to induce chirality, enantio- or diastereomerically pure platinacycles with a σ (Pt–Csp²,ferrocene) bond are really scarce. Cycloplatination of $[(\eta^5-C_5H_5)Fe\{(\eta^5-C_5H_4)CH_2NMe_2\}]$ (I) or $[(\eta^5 - C_5 H_5)Fe\{[(\eta^5 - C_5 H_4)C(R^1) = NR^2\}]$ (II) (with $R^1 = H$, Me or Ph and $R^2 = OH$, $(CH_2)_3NMe_2$ or phenyl groups) lead to the enantiomers R_p and S_p .^{5–7} Ryabov *et al.*⁸ have reported that the reaction of equimolar amounts of I and the enantiopure platinum(II) sulfoxide: cis-[PtCl₂{(S_S)-S(O)Me(C₆H₄-4-Me)}₂] produced the two diastereomers $[(R_p, S_S)]$ and (S_p, S_S)] of [Pt{[(η⁵- C_5H_3)CH₂NMe₂]Fe(η^5 - C_5H_5)}Cl(dmso)] [in a molar ratio (R_p, S_S)/ $(S_p, S_S) = 1.3].$

In the view of these findings and due to our present interest in diastereomerically pure metallacycles derived from N-donor ferrocenyl ligands, we decided to use a different strategy to afford platinacycles with σ [Pt–Csp², ferrocene] bonds based on the use of ferrocene derivatives arising from $\hat{\mathbf{II}}$ by incorporation of a stereogenic carbon atom in the vicinity of the imine nitrogen. With this aim we prepared the novel ferrocenyl Schiff bases (S_C) -[$(\eta^5$ - C_5H_5)Fe{ $(\eta^5-C_5H_4)C(H)=NCH(R^3)CH_2OH$ }] {with $R^3 = Me(1a)$ or CHMe₂ (1b)} (Scheme 1) and studied their reactivity with cis-[PtCl₂(dmso)₂]¹⁰ under different experimental conditions. Treatment of 1a or 1b with cis-[PtCl2(dmso)2] and NaOAc (in a 1:Pt(II):OAc⁻ molar ratio = 1:1:2) in a toluene/methanol mixture under reflux for 3 days, produced the two diastereomers of $[Pt{[(\eta^5-C_5H_3)C(H)=N-CH(R^3)CH_2OH]Fe(\eta^5-C_5H_5)}Cl(dmso)]$ {with R^3 = Me or CHMe₂ (2,3a-b) Scheme 1¹¹} and small amounts of ferrocenecarboxaldehyde (FcCHO) as a by-product. In contrast with the results reported for the cycloplatination of I,8 when the reactions were performed in the absence of

Scheme 1 *cis*-[PtCl₂(dmso)₂] and NaAcO (in a ligand:Pt(II):OAc⁻ molar ratio of 1:1:2) in a toluene/methanol mixture under reflux for 3 days (see

† Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b315157c/

NaOAc, $[Pt{(\eta^5-C_5H_5)Fe{[(\eta^5-C_5H_4)C(H)=N-CH(R^3)CH_2OH]}-Cl_2(dmso)], (4) {R^3 = Me (4a) or CHMe_2 (4b)} were isolated.$

Although 4 can be partially transformed in the corresponding platinacycles by treatment with the equimolar amount of NaOAc in methanol or toluene under reflux, longer reaction periods were required ($t \ge 6$ days), the yields were smaller and FcCHO and *cis*-[Pt{(η^5 -C₅H₅)Fe[(η^5 -C₅H₄)C(H)=NCH(R³)CH₂O]Cl(dmso)], (5) {R³ = Me (5a) or CHMe₂ (5b)} were also isolated. Besides that, when equimolar amounts of 1, *cis*-[PtCl₂(dmso)₂] and NaOAc were refluxed in methanol, toluene (or mixtures of both) for different reaction periods (from 6 h to 10 days), FcCHO and 2–5, were obtained. The molar ratios 4:5 and 4:(2 and 3) decreased with time, thus suggesting that 4 may be an intermediate product in the formation of 2, 3 and 5.

Compound **3b** has been characterised by X-ray diffraction¹² (Fig. 1). In each molecule, the platinum atom is in a slightly distorted square-planar environment and bond lengths involving the platinum(II) are similar to those reported for related platinacycles.¹⁶ The distances C(12)-H(12)···Cl and C(18)-H(18)···Cl suggest intramolecular C-H···Cl interactions. In the crystal the molecules are associated by hydrogen bonds involving the C(3)-H(3) bond and the O(2) atom of a proximal molecule thus leading to a chain which stacks along the *b*-axis.

Due to the increasing interest on the electrochemical properties of cycloplatinated complexes,^{5,17} we have also undertaken an electrochemical study based on cyclic voltammetry for **1–3a,b.**¹⁸ The formation of the σ [Pt–C(sp²,ferrocene)] bond produces a shift of the ferrocene-centred transition to more cathodic potentials in good agreement with the results reported for [Pt{[($\eta^5 - C_5H_3$)C(Me)=NOH]Fe($\eta^5-C_5H_5$)}Cl(dmso)].⁵

The work presented here has allowed us to establish the best experimental conditions required to prepare and isolate the diastereomers [(**2a,3a**) and (**2b,3b**)] of [Pt{[(η^5 -C₅H₃)C(H)=N-CH(R³)CH₂OH]Fe(η^5 -C₅H₅)}Cl(dmso)] {R³ = Me or CHMe₂}. Besides their potential interest in homogeneous catalysis,² they are also useful precursors for the synthesis of other platinacycles arising from **2–3a,b** by ligand exchange reactions. In addition, since it has been reported that [Pt{[(η^5 -C₅H₃)-CH₂NMe₂]Fe(η^5 -C₅H₅)}Cl(dmso)],⁷ (in which the environment of the Pt(II) is very

Fig. 1 ORTEP plot of **3b**. Selected bond lengths (in Å) and angles (deg.): Pt–C(6) 2.018(11); Pt–N, 2.090(9); Pt–S, 2.2182(3); Pt–Cl, 1.380(3); C(6)–Pt–N, 82.3(5); C(6)–Pt–S, 91.5(4); N–Pt–Cl, 92.6(3) and S–Pt–Cl, 93.57(11).

text and reference 11).

similar to those of 2 and 3) exhibits antitumour activity, the platinacycles presented here appear to be excellent candidates for future studies in this area.

This work was supported by the Ministerio de Ciencia y Tecnología, the Generalitat de Catalunya and FEDER funds.

Notes and references

- (a) L. M. Rendina and R. J. Puddephatt, *Chem. Rev.*, 1997, 97, 1735; (b)
 M. Crespo, J. Granell, X. Solans and M. Font-Bardía, *Organometallics*, 2002, 21, 5140–5141.
- 2 (a) M. Albrecht and G. van Koten, Angew. Chem. Int. Ed., 2001, 40, 3750–3781; (b) J. Dupont, M. Pfeffer and J. Spencer, Eur. J. Inorg. Chem., 2001, 1917–1927.
- 3 Y. Wu, S. Huo, J. Gong, X. Cui, L. Ding, K. Ding, C. Du, Y. Liu and M. Song, J. Organomet. Chem., 2001, 637–639, 27–46.
- 4 A. D. Ryabov, I. M. Payaskina, V. A. Polyakov and A. Fisher, Organometallics, 2002, 21, 1633–1636.
- 5 A. D. Ryabov, G. M. Kazankov, I. M. Payashkina, O. G. Grozovsky, O. G. Dyachenko, V. A. Polyakov and L. G. Kuz'mina, J. Chem. Soc., Dalton Trans., 1997, 4385–4391.
- 6 Y. Wu, L. Ding, H. X. Wang, Y. H. Liu, H. Z. Huan and X. A. Mao, J. Organomet. Chem., 1997, 535, 49–58.
- 7 P. R. R. Ranatunge-Bandarage, B. H. Robinson and J. Simpson, Organometallics, 1994, 13, 500-510.
- 8 A. D. Ryabov, I. M. Payashkina, V. A. Polyakov, J. A. K. Howard, L. G. Kuz'mina, M. S. Datt and C. Sacht, *Organometallics*, 1998, **17**, 3615–3618.
- 9 S. Pérez, C. López, A. Caubet, X. Solans and M. Font-Bardía, New J. Chem., 2003, 27, 975–982.
- 10 J. H. Price, A. N. Williamson, R. F. Schramm and B. B. Wayland, *Inorg. Chem.*, 1972, **11**, 1280–1284.
- The diastereomers were separated by SiO₂ column chromatography using a CH₂Cl₂:MeOH (100:0.02) mixture as eluent. Yields: 30 (2a), 27 (3a), 16 (2b) and 27 (3b) %. Characterisation data for 2a: ¹H-NMR data (500 MHz) δ = 8.20[s, 1H, -CH=N-, ³J(Pt-H) = 110], 4.28[s, 5H, C_5H_5], 4.50[dd, 1H, J = 2.6 and J = 1.0, H^3], 4.58[t, 1H, J = 2.7, H^4], 5.22[dd, 1H, J = 2.5, J = 1.0 Hz, H⁵], 4.73–4.82[br.m, 1H, H⁶], 3.89-3.95 and 3.73-3.82 [br.m, 2H, H7], 2.01[br.m, 1H, -OH], 1.29[d, 3H, J = 8.5, Me, 3.54 [s, $3H, {}^{3}J(Pt-H) = 31, Me(dmso)$] and 3.59[s, 3H, ${}^{3}J(Pt-H) = 28$, Me(dmso)] ppm. ${}^{13}C{}^{1}H$ -NMR data (100.78 Hz): $\delta = 174.7[-CH=N-, J(Pt-C) = 60.2], 70.5[C_5H_5], 86.5[C^1], 86.1[C^2],$ 71.7[C³], 68.1[C⁴], 76.4[C⁵], 59.7[C⁶], 66.4[C⁷], 16.6[Me], 47.0 and 47.1 [Me(dmso)] ppm. ¹⁹⁵Pt{¹H}NMR: $\delta = -3824$ ppm. IR: v(-CH=N-) = 1578 cm^{-1} . $R_f[CH_2Cl_2:MeOH(100:0.1)] = 0.096$. For **3a**: ¹H-NMR data (500 MHz) δ = 8.21[s, 1H, -CH=N-, ³J(Pt-H) = 109], $4.25[s, 5H, C_5H_5], 4.55[dd, 1H, J = 2.5 and J = 1.0 Hz, H^3], 4.75[t, 1H, J = 1.0 Hz,$ $J = 2.5, H^4$], 5.20[dd, 1H, J = 2.5, $J = 1.0, H^5$], 4.62–4.74[br.m, 1H, H⁶], 3.70–3.82[br.m, 2H, H⁷], 1.83[br.m, 1H, –OH], 1.44[d, 3H, J = 6.5, Me], 3.58 [s, 3H, ${}^{3}J(Pt-H) = 21$, Me(dmso)] and 3.54[s, 3H, {}^{3}J(Pt-H) = 21, Me(dmso)] and A = 21, Me(dmso)] a H) = 23, Me(dmso)] ppm. ¹³C{¹H}-NMR data (100.78 Hz): δ = 174.9[-CH=N-], 70.3 [C₅H₅], 86.3[C¹], 85.7[C²], 68.2[C³], 71.6[C⁴],

76.4[C⁵], 60.3[C⁶], 65.3[C⁷], 17.1[Me], 47.0[Me(dmso)] ppm. ¹⁹⁵Pt{¹H}-NMR: $\delta = -3814$ ppm IR: ν (-CH=N-) = 1576 cm⁻¹. R_f $[CH_2Cl_2:MeOH (100:0.1)] = 0.021$. For **2b**: ¹H-NMR data (500 MHz) $\delta = 8.21[s, 1H, -CH=N-, ^{3}J(Pt-H) = 107], 4.37[s, 5H, C_{5}H_{5}], 4.60[s, 3]$ H3], 4.68[br, 2H, H4 and H6], 5.31[s, 1H, H5], 3.84-3.90 and 3.95-4.01 [br.m, 2H, H7], 2.20[br.m, 1H, -OH], 1.66 [br., 1H, H8], 0.99[d, 3H, J = 6.5, Me], 0.95[d, 3H, J = 6.5, Me] and 3.54 [s, 6H, Me(dmso)] ppm. ¹³C{¹H}-NMR data (100.78 Hz): $\delta = 176.4$ [-CH=N-], 70.0[C₅H₅], 86.3[C¹], 86.1[C²], 67.8[C³], 68.1[C⁴], 71.2[C⁵], 76.1[C⁶], 75.3[C⁷], 28.3[C8], 19.5 and 19.9[Me] and 46.8[Me(dmso)] ppm.195Pt{1H}-NMR: $\delta = -3826$ ppm. IR: v(-CH=N-) = 1575 cm⁻¹. R_f [CH₂Cl₂:MeOH (100:0.2)] = 0.083. For **3b**: ¹H-NMR data (500 MHz) δ = 8.21[s, 1H, -CH=N-, ³J(Pt-H) = 115], 4.29[s, 5H, C₅H₅], 4.51[s, 1H, H³], 4.57[br., 2H, J = 2.5, H⁴ and H⁶], 5.22[s, 1H, H⁵], 4.62-4.74[br.m, 1H, H⁶], 3.70-3.82 and 3.90-4.10[br.m, 2H, H⁷], 2.40[br.m, 1H, -OH], 1.08 [d, 6H, Me], 3.59 [s, 3H, ${}^{3}J(Pt-H) = 21$, Me(dmso)] and 3.55[s, 3H, ${}^{3}J(Pt-H) = 23$, Me(dmso)] ppm. ${}^{13}C{}^{1}H{}$ -NMR data (100.78 Hz): $\delta = 176.8$ [-CH=N-], 70.3[C₅H₅], 86.7[C¹], 85.8[C²], 67.8[C³], 71.2[C⁴], 75.9[C⁵], 75.3[C⁶], 67.3[C⁷], 28.2[C⁸], 19.5 and 20.2[Me], 47.0[Me(dmso)] ppm. ¹⁹⁵Pt{¹H}NMR: $\delta = -3825$ ppm. IR: $v(-CH=N-) = 1571 \text{ cm}^{-1}$. $R_f [CH_2Cl_2:MeOH (100:0.2)] =$ 0.033

- 12 Crystallographic data for **3b**: $C_{18}H_{25}CIFeNO_2PtS$, Mw = 605.855 Orthorhombic, $P2_12_12_1$, a = 7.1740(19), b = 9.6780(10), c = 28.8870(10) Å, $\alpha = \beta = \gamma = 90^\circ$, V = 2005.6(4) Å³ and Z = 4. For 6248 reflections the final R(on F) and $wR(\text{on } F^2)$ factors were 0.0371 and 0.0876, respectively. The Flack coefficient¹³ was 0.00(33). Data collected with a MAR345 diffractometer with a image plate detector. Intensities were collected with a graphite monochromatised Mo–K_{\alpha} radiation. The structure was solved by Direct methods, using SHELXS computer program¹⁴ and refined by full-matrix least-squares method using SHELX93 computer program.¹⁵ CCDC 224295. See http:// www.rsc.org/suppdata/cc/b3/b315157c/ for crystallographic data in .cif or other electronic format.
- 13 H. D. Flack, Acta Cryst., 1983, A39, 876-881.
- 14 G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of Göttingen, Germany, 1997.
- 15 G. M. Sheldrick, SHELXL-93, A computer program for determination of crystal structures, University of Göttingen, Germany, 1993.
- 16 T. H. Allen and O. Kennard, Chem. Design Automation News, 1997, 8, 146–148.
- 17 (a) M. Crespo, C. Grande and A. Klein, J. Chem. Soc., Dalton Trans, 1999, 1629–1638; (b) A. Klein, S. Hasenzaht, W. Kaim, J. Fiedler and F. Zalis, Organometallics, 1998, **17**, 3532–3538.
- 18 Summary of electrochemical data: anodic (E^{ox}) and cathodic potentials (E^{red}) , separation between peaks $[\Delta E = E^{\text{ox}} E^{\text{red}}]$ and intensity ratio $I_{\text{pa}}/I_{\text{pc}}$ at 25 °C. (The potentials, in mV, are referred to the ferrocene/ferricinium couple): For **1a**: $E^{\text{ox}} = 195$, $E^{\text{red}} = 58$, $\Delta E = 135$ and $I_{\text{pa}}/I_{\text{pc}} = 1.62$; for **1b**: $E^{\text{ox}} = 105$, $E^{\text{red}} = 51$, $\Delta E = 90$, $I_{\text{pa}}/I_{\text{pc}} = 1.49$; for **2a**: $E^{\text{ox}} = 100$, $E^{\text{red}} = 18$, $\Delta E = 82$, $I_{\text{pa}}/I_{\text{pc}} = 1.41$; for **3a**: $E^{\text{ox}} = 118$, $E^{\text{red}} = 34$, $\Delta E = 84$, $I_{\text{pa}}/I_{\text{pc}} = 1.43$; For **2b**: $E^{\text{ox}} = 97$, $E^{\text{red}} = 19$, $\Delta E = 78$, $I_{\text{pa}}/I_{\text{pc}} = 1.26$ and for **3b**: $E^{\text{ox}} = 104$, $E^{\text{red}} = 31$, $\Delta E = 73$ and $I_{\text{pa}}/I_{\text{pc}} = 1.40$.